
1

Dual-Edge Signaling Logic

David	R	Resnick
Extreme	Scale	Computing	Group,	1420
Center	for	Computing	Research,	Sandia	National	Laboratories

The	single-pulse	nature	of	Josephson	junction	(JJ) logic	functions makes	logic	design	harder	to	do	and	
not	at	all	familiar	to	pretty	much	all	people	who	might	want	to	design	using	JJs—in	effect,	logic	zeros	
are	missing	and	the	logic	must	be	somewhat	more	complex	in	implementation	to	‘get	around’	that.	
One	result	of	the	single-sided	logic is	that	a	constant	clock	function	is	needed	for	most	all	the	
individual	logic	functions and	gates in	current	JJ	design	styles	to	work.	The	resultant	clock	
distribution	is	thus	large	and	takes	a	large	proportion	of	the	logic	energy.	

Here	is	a	proposal	for	a	different	kind	of	logic	design	style	and	function that	may	well	overcome	most	
of	the	difficulties	mentioned	above.	If	the	logic	functionality shown	here	can	actually	be	brought	to	life,	
it	would	be	interesting	to	assess	its	impact	in	area,	in	energy	usage, ease	of	design, etc.

A	JJ	design	and	implementation	issue,	that	of	restricted	fan-out,	is	not	addressed	here.

The Basic Idea

All	logic	signals	are	generated	and	sent	as	signal	pairs.	A 2-in	AND	gate	has	two pairs	of	input	signals	
and	a	pair	of	output	signals.	One	of	signals	in	a	pair has	a	pulse	when	the	signal-pair	indicates	going	
from	a	0	to	a	1,	and	the	other signal carries	a	pulse	when	the	signal-pair	indicates	going	from	a	1	to	a	
0.	This	means	that	if	the	receiver	of	a	signal	captures	the	pulses	there	is	never	a	need	to	retransmit	
the	signal;	only	changes	are	sent.	The	state	of	the	signal	pair	is	that	of	the	line	carrying	the	last	signal	
pulse.

At	the	input	of most	logic	functions	it	is	expected	that	the	1-going	signal	of	a	pair	will	set	a	JJ	in	one	
direction	and	the	other	0-going	signal	will	set	that	JJ	in	the	opposite	direction	(or	simply	cancel	the	
magnetization	in	the	JJ?).	In	receiving	from	a	signal	pair,	there	is	thus	a	JJ	that	functions	as a	set/clear	
latch	that	holds	the	state	of	the	received	signal	pair. Each	side	of	signal	pair	is	also	used	separately,	as	
needed	and	along	with	the	JJ	latches,	to	implement	the	logic	function	of	the	gate.

Extending the Semantics of Boolean Equations

There	are	four	pieces	of	information	needed	to	describe	what	is	going	on	with	respect	to	a	signal-
pair.	In	the	table	below,	will	use	‘N’	as	a	generic	name	to	be	replaced	as	needed.

Symbol Meaning

1. 				NL Pulse	on	the	0→1	side	of	a	signal-pair

2. 				NT Pulse	on	the	1→0	side	of	a	signal-pair

3. 				N+ The	symbol	JJ	latch	is	set in	the	0→1	direction

4. 			N– The	symbol	JJ	latch	is	set	in	the	1→0	direction

‘L’	and	‘T’	stand	for	‘Leading’	(as	in	Leading	Edge)	and	‘Trailing’	respectively

These	symbol	extensions	are	then	used	in	writing	the	equations	that	describe	the	logical	functions	of	
logic	gates.	An	example	from	an	AND	gate:	OL =	A+⋅BL +	AL⋅B+

This	means	that	if	the	A	latch	is	set	when	a	pulse	on	the	B-pair	leading	edge	arrives,	generate a	pulse	
to	the	O	(Output)	leading-edge signal	wire.	In	addition, a	pulse	is	sent	out	OLwhen	the	B-latch	is	set	
and	a	pulse	on	the	leading	edge	of	A	is	received.

SAND2015-3286R



2

Back to the Basic Idea

The	leading-,	trailing-edge	idea	is	used	in	developing	the	output	signals	of	any	logic	function.	But	it	
cannot simply complement	the	output	of	the	logic	that	implements	the	logic	function	to	become	the	
second/trailing-edge signal	of	an	output	pair because	of	the	pulse	logic.	Instead,	using	a	2-in	AND	as	
an	example,	while	the	‘leading’	side	of	gate	implements the	needed	logic	equation—AND	here,	the	
‘trailing’	side	is	generated	from	other side	of	the	logic	inputs,	and uses	a	De	Morgan-law	form	of	the	
generation	equation—thus	!A	OR	!B	(using	‘!’	for	negation).	

Outside	of	some	control	signals	that	enable	or	disable	the	L	and	T	sides	at	the	same	time,	to	a	gate
logic	designer	an L output	signal	is	generated	using	L	side	of	an	input	term	if	the	term	used	as	true	
and	the	T	side	of	an	input	term	if	used	in	complement	form,	and	ANDs	and	ORs	as	indicated	in	the	
equation	be	implemented.		The	T	output	signal	is	generated	using	the	opposite	side of	the	input	
terms	from	the	L	side,	and	with	ORs	in	place	of	ANDs	and	ANDs	in	place	of	ORs.	

Both	the	A	and	the	B	signal-pairs	into	the	AND	must	‘set’	and	‘clear’	their	respective	JJ	state	latches.	

AL→	A+

AT→	A−

BL→	B+

BT→	B−

The	output	equations	are:

OL =				 A⋅B																									=		A+⋅BL +	AL⋅B+

OT =	 !(A⋅B)	=		(!A	+	!B)	=		AT+BT

Note	that	the	AND	terms	in	the	defining	Boolean	expand	to	two	terms,	one	for	each	possible	input	
order.	The	pulse	arriving	first	is	used	in	an	equation	in	latch	state	form;	the	second	as	a	pulse.	In	most	
all	cases	the	logic	must	be	able	to	handle	all	possible	input	orders—thus	two	terms	for	this	2-in	gate.

Note	that	if	A	and	B	go	to	zero	in	succession	(adjacent	T	pulses,	one	from	each	pair),	that	there	are	
two	trailing-edge	output	pulses;	this	has no	logical	effect.

Example: 2-in XOR

The	basic	Boolean	equations	for	an	XOR	gate	driving	a	signal-pair	output	are:	
OL =	A⋅!B	+	!A⋅B
OT = A⋅B	+	!A⋅!B

The	equation	for	the	trailing	signal	is	the	complement	(jiggered	De	Morgan)	of	the	output	for	the	
leading	edge	side.	

The	equations	turn	into the	following	pair.	Each	of	the	AND	terms	in	the	above	equations	turn	into	a	
pair	of	terms	as	it	is	assumed	here	that	there	is	no	knowledge	of	the	order	of	the	A	and	B	inputs.

OL =	A+⋅BT +	B–⋅AL +	A+⋅BL +	B+⋅AT

OT =	A+⋅BL +	B+⋅AL +	A–⋅BT +	B–⋅AT



3

Means What?

There	are	some	interesting	things	that	result	from	doing	this:

 To	this	point	in	exploring	the	design	space	there	is	no	need	for	logic	inversion	(NOT)	gates.	
Inversion	is	built	into	the	structure.	Signal	pairs	can	be	connected	in	both	senses,	and	both	
pulse	and	JJ senses	are	available	to	use	in	implementing	the	logic	functions.	

 Except	for	timing	issues,	state	saving,	and	similar	concerns,	outputs	can	be	generated	
directly	from	the	input	signals;	there	is	no	need	for	clocking	or	resetting	JJs	in	logic-only	
gates.	Gates	should	be	able	to	directly	connect	together	in	most	cases	without	clocking.	This	
should	greatly	reduce	the	amount	of	clock	fan-out	and	functions.	More	on	this	below.

 In	most	cases,	a	single	gate	type	can	be	used	for	multiple	different	logic	functions. The	AND	
gate	above	actually	can	be	used	for	multiple	different	logic	functions:	AND,	NAND,	OR,	NOR,	
A⋅!B,	A+!B.	The	XOR	gate	is	also	an	EQV	gate	(Equivalence),

 There	is	more	logic	function	in	one	of	these	gates	then	in	previous	logic	types.	One	result	is	
that	there	are	more	components	in	the	gate—a	bigger	area.	This	trades-off	in	a	reduction	of	
the	total	number	of	gates	needed	to	implement	a	specific	function	in current	JJ	logic	types	(as	
far	as	the	current logic	capabilities	are	known). Another	result	is	that	implementation	logic	
is	built	from	only	a	few	basic	functions.	This	means	that	it	may	well	be	possible to	have	gate-
array	or	standard-cell	logic	in	which	a	general	structure	of	components	is	metalized	into	any	
of	a	wide	library	of	gates interconnected	as	needed.	IF	this	is	reasonable,	then	JJ	logic	design	
just	became	MUCH	easier	to	do.

With	respect	to	the	third bullet:	The	2-in	AND	gate	can	be	used	in	multiple different	ways,	depending	
on	which	side	of	each signal	pair	is	considered the	‘true’	side.	If	the	output	side	of	the	gate	is	used	so	
that	its	L	and	T	senses	are	reversed	(the	T	side	is	hooked	up	to	the	L	side	of	the	gate	being	driven	and	
the	L	side	connected	to	the	T	input	side),	the	result	is	a	NAND	gate.	If	the	input	and	output	sides	of	
the	gate	are	reversed	then	the	result	is	a	full	OR	gate.	And	if	one	of	the	input	pair	is	reversed	then	the	
function	is A⋅!B;	if the	output	pair	is	also	then	reversed,	the	function	becomes	!A+B.

Interconnection

There	being	no	clocking	logic	in	the	gate	implementations	discussed	to	this	point	means that	logic	
can	be	chained	and	interconnected	in	multi-level	asynchronous	blocks.	Data	flow	is	thus	
unconstrained,	though	there	likely	needs	to	be	timing	computer-aided	design	tool to	verify	that	
signals	can	be	kept	in	order	where	that	is	needed in	addition	to	meeting	setup	and	hold	times	in	the	
appropriate	places.	There	is	then	a	need	for	latch/flip-flop	functions	to	maintain	order	and	also	to	
create	function	blocks	that	have	outputs	that	are	insensitive	to	changes	in	input	state.



4

Making Latches and Flip-Flops

For	the	purposes	here,	a	latch	holds	a	logic	level	at	its	output	when	the	latch	signal	is	active,	
otherwise	enabling	input	data	to	flow	to	the	gate	output.	A	flip-flop	(FF)	captures	its	input signal	at	a	
specific	(leading- or	trailing-)	edge	of	a	clocking	signal,	transferring	that	data	to	the	FF’s	output.

For	the	purposes	here	a	latch	simply	prevents	any	following	output	pulses	when	the	latch	signal	is	
active	(so	between	a	leading	edge	latch	signal	and	a	following	trailing	edge).	Most	full	FFs	in	other	
logic	types	are	back-to-back	latches,	which	each	latch	holding	data	on	opposite	levels	of	the	clock	
signal.	For	this	logic,	where	signals	are	pulses,	a	latch	or	FF	is	about	the	simplest	of	all	possible	gates	
(inverters	excepted	here	because	there	aren’t	any.

For	the	equations	below,	the	following	pin	description:	

D:	Data	input,	C:	Clock	or	latch	enable	signal,	O:	Output

Not	shown	again	are	the	JJ	input	latch	equations	resulting	in	D+ and	D-,	which	are	standard	for	all	
dual-edge	gates.

Output Equations for a Flip-Flop

OL =	D+⋅CL The	state	of	the	data	input	is	strobed	to	the	output
OT =	D–⋅CL

The	FF	can	be	used	to	capture	on	the	trailing	edge	of	the	clocking	signal	by	reversing	the	C	input	
signal	connection.

Output Equations for a Latch

OL =	DL⋅C–

OT =	DT⋅C–

Each	latch	equation	enables	the	output	to	follow	the	input	when	the	latch	is	simply	passing	signals	
thru. If	the	latch	signal	is	true	then	the	output	does	not	change	from	what	it	was	before	the	signal	
became	true;	no	further	pulses	are	passed	while	C	is	true.

Most	any	gate	can be	‘upgraded’	to	include	latch	or	FF	functionality	by	expanding	the	output	
equations	to	include	the	C	terms	shown	here.

And …

Some logic	will	have	to	be	initialized	at	start-up	and/or	include some	sort	of	master-clear,	both	for	
clearing	latches	and	FFs,	and also	for	the	states	of	the	JJs	in	the	logic	gates. In	a	lot	of	cases	the	logic	
should	be	largely	self-clearing,	for	example	in	a	set	of	pipe	stages,	so	that	the	clearing	network	should	
not	be	hugely	expensive	in	area	or	complexity.

Note:	Not	counting	fully	differential	signaling,	there	have	been	2-wire	signal	implementations	done	
before	for	logic	functions.	One	example	of	this	is	where	the	second	wire	of	a	pair	is	used	to	indicate	
validity	of	the	first	wire;	this	kind	of	signal-pair	connection	has	been	done	for	fully	asynchronous	
logic	implementations	(no	clocks	at	all).

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-AC04-94AL85000.


